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Abstract

We derive the multivariate moment generating function for the stationary distribution of a
discrete sample path of n observations of a square-root diffusion (CIR) process, X(t). The form
of the mgf establishes that the stationary joint distribution of (X(t1), . . . , X(tn)) for any fixed
vector of observation times t1, . . . , tn is a Krishnamoorthy-Parthasarathy multivariate gamma
distribution. As a corollary, we obtain the mgf for the increment X(t + δ) − X(t), and show
that the increment is equivalent in distribution to a scaled difference of two independent draws
from a gamma distribution. Simple closed-form solutions for the moments of the increments are
given.

Keywords: square-root diffusion; CIR process; multivariate gamma distribution; difference of
gamma variates; Krishnamoorthy-Parthasarathy distribution; Kibble-Moran distribution; Bell
polynomials.

Let Xt follow the Feller (1951) square-root diffusion process with stochastic differential equation

dXt = κ(θ −Xt)dt+ σ
√
XtdWt (1)

where Wt is a Brownian motion. We assume that κ > 0, θ > 0 and σ > 0. This process is widely
used in economics and finance, especially in modeling interest rates and corporate credit risk, where
it is usually known as the CIR process after Cox, Ingersoll, and Ross (1985). In this paper, we
derive the moment generating function for the stationary multivariate distribution of a discrete
sample path of this process.

Let X ≡ (X(t1), . . . , X(tn)) be a discrete sample path for a given vector of ordered observation
times t1 < t2 < . . . < tn. Let u denote the vector of auxilliary variables u1, . . . , un and let diag(u)
be the diagonal matrix with diagonal entries u1, . . . , un. Let R be the symmetric n×n matrix with
elements R[i, j] = exp(−(κ/2)|ti− tj |). In is the n× n identity matrix. Define the scale parameter
ν = σ2/(2κ). The central result of this paper is

Theorem 1. The mgf of (X(t1), . . . , X(tn)) under stationarity is

MX(u) = E [exp(〈u,X〉)] = det(In − νR diag(u))−θ/ν

∗I thank Yacine Aı̈t-Sahalia, Luca Benzoni, Jens Christensen, Yang-Ho Park, Steven Shreve, Richard Sowers and
David Zelinsky for helpful discussion. Bobak Moallemi provided excellent research assistance. The opinions expressed
here are my own, and do not reflect the views of the Board of Governors or its staff. Email: 〈michael.gordy@frb.gov〉.
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The proof is set out in Section 1.
The distribution of X is a special case of the broader class of Krishnamoorthy and Parthasarathy

(1951) multivariate gamma distributions with mgf of the form det(In−R diag(u))−α for nonsingular
R and α > 0 (see also Kotz et al., 2000, §48.3.3). Series solutions for the density and cumulative
distribution functions are given by Royen (1994) for the case in which the inverse of R is tridiagonal
(see also Kotz et al., 2000, §48.3.6), which applies for our matrix R. These series solutions are
computationally practical only for low dimension n.

The stationary square-root process has exponential decay in the autocorrelation function (Cont
and Tankov, 2004, §15.1.2), so for pairs (i, j) in {1, . . . , n}2, the correlation corr(X(ti), X(tj)) is
given by

ρi,j = exp(−κ|ti − tj |) = R[i, j]2.

From this relationship, the matrix R is known as the accompanying correlation matrix.
In the bivariate case, the mgf has a simple form

Corollary 1. The mgf of (X(t), X(t+ δ)) under stationarity is

MX(u1, u2) = E [exp(u1X(t) + u2X(t+ δ))] = ((1− νu1)(1− νu2)− ρu1u2)−θ/ν

where ρ = exp(−κδ).

This is the Kibble-Moran bivariate gamma distribution (see Kotz et al., 2000, §48.2.3). In Section 2,
we use this corollary to study the stationary distribution of the increment X(t+ δ)−X(t) for fixed
time-step δ. We show that this increment is equivalent in distribution to a scaled difference between
two independent gamma variates, and provide a simple closed-form solution for the moments of
this distribution. Applications are discussed in the concluding section.

1 Moment generating function

It is well known that the transition distribution for X(t+ δ) given X(t) is noncentral chi-squared.1

Letting Mc denote the conditional mgf for X(t+ δ) given X(t), we have

Mc(u; δ, x) = E [exp(uX(t+ δ))|X(t) = x]

=
(

1− ν
(

1− e−κδ
)
u
)−θ/ν

exp

(
e−κδu

1− ν (1− e−κδ)u
x

)
(2)

As the square-root diffusion is a Markov process, we have

E [exp(unX(tn))|X(tn−1), X(tn−2), . . . , X(t1)]

= E [exp(unX(tn))|X(tn−1)] = Mc(un; tn − tn−1, X(tn−1))

1See Alfonsi (2010) for a summary of basic properties of the square-root diffusion.
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To exploit the conditional mgf, we write MX in nested form:

MX(u) = E [exp(u1X(t1) + . . .+ un−1X(tn−1))Mc(un; tn − tn−1, X(tn−1))]

= (1− ν(1− ρn−1,n)un)−θ/ν ·

E

[
exp(u1X(t1) + . . .+ un−2X(tn−2))E

[
exp(un−1X(tn−1)) exp

(
ρn−1,nun

1− ν(1− ρn−1,n)un
X(tn−1)

) ∣∣∣∣X(tn−2)

]]
= (1− ν(1− ρn−1,n)un)−θ/ν ·

E [exp(u1X(t1) + . . .+ un−2X(tn−2))Mc(ũn−1; tn−1 − tn−2, X(tn−2))] (3)

where
ũn−1 = un−1 +

ρn−1,nun
1− ν(1− ρn−1,n)un

Repeating this process n− 1 times in total, we get

MX(u) =

[
n∏
k=2

(1− ν(1− ρk−1,k)ũk)

]−θ/ν
E [exp(ũ1X(t1))]

where the modified auxilliary variables have the forward recursive relationship

ũk = uk +
ρk,k+1ũk+1

1− ν(1− ρk,k+1)ũk+1
(4)

for k = 1, . . . , n and where we fix ũn+1 = 0 (so ũn = un). The stationary distribution of X(t1) is
gamma with shape parameter θ/ν and scale parameter ν, which has mgf

MΓ(u) = (1− νu)−θ/ν (5)

so we arrive at

MX(u) =

[
(1− νũ1)

n∏
k=2

(1− ν(1− ρk−1,k)ũk)

]−θ/ν
(6)

Equation (6) is computationally convenient but analytically cumbersome. Let Q(u) be the
expression inside the brackets, so that MX(u) = Q(u)−θ/ν . We now simplify Q(u) by writing it as
a finite series in powers of ν.

Let S(n, k) be the set of subsequences of length k from the sequence 1, . . . , n, so that if s ∈
S(n, k), then

1 ≤ s(1) < s(2) < . . . < s(k) ≤ n.

For k = 1, . . . , n, define the functions

fk(u) =


1 if k = 0,∑n

i=1 ui if k = 1,∑
s∈S(n,k)

(∏k−1
i=1 (1− ρs(i),s(i+1))

)(∏k
i=1 us(i)

)
otherwise.

(7)

In Appendix A, we prove
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Proposition 1.

Q(u) =
n∑
k=0

(−ν)kfk(u)

To prove Theorem 1, we need to prove that det(In − νR diag(u)) has the same expansion as in
Proposition 1. Recall that the characteristic polynomial of a square n × n matrix A is defined as
det(λIn−A). For a subsequence s ∈ S(n, k), let As denote the kth order diagonal minor of A with
elements As[i, j] = A[s(i), s(j)] and let Ωk(A) for 1 ≤ k ≤ n be defined as

Ωk(A) =
∑

s∈S(n,k)

det(As).

For notional convenience, we define Ω0(A) = 1 = f0(u). Then the characteristic polynomial of A
has the expansion (Gantmacher, 1959, §III.7)

det(λIn −A) = λn − Ω1(A)λn−1 + Ω2(A)λn−2 − . . .+ (−1)nΩn(A) (8)

Substituting λ = 1 and A = νR diag(u) in (8), we have

det(In − νR diag(u)) = 1− Ω1(νR diag(u)) + Ω2(νR diag(u))− . . .+ (−1)nΩn(νR diag(u))

=
n∑
k=0

(−1)kΩk(νR diag(u)) =
n∑
k=0

(−ν)kΩk(R diag(u)) (9)

Since diag(u) is a diagonal matrix, the diagonal minor (R diag(u))s is equal to the product
Rs diag(us). Thus, we have

Ωk(R diag(u)) =
∑

s∈S(n,k)

det((R diag(u))s) =
∑

s∈S(n,k)

det(Rs) det(diag(us)) (10)

For the case of k = 1, det(Rs) = 1 for all s ∈ S(n, 1), so

Ω1(R diag(u)) =

n∑
i=1

ui = f1(u).

For the case of 2 ≤ k ≤ n, we make use of this lemma:2

Lemma 1. Let A be an m×m matrix with elements A[i, j] = exp(−(c/2)|ti−tj |) for some constant
c ≥ 0 and vector of nonnegative t1, . . . , tm. Then det(A) =

∏m−1
i=1 (1− exp(−c|ti+i − ti|)).

Proof. Let B be an m×m matrix with diagonal elements B[i, i] = 1/A[i, i+ 1] for i = 1, . . . ,m− 1
and B[m,m] = 1, B[i, i+ 1] = −1 on each element of the superdiagonal, and zero elsewhere. It is
easily verified that the matrix C = BA is lower triangular with diagonal entries

C[i, i] = 1/A[i, i+ 1]−A[i, i+ 1] = (1/A[i, i+ 1]) ·
(
1−A[i, i+ 1]2

)
for i = 1, . . . ,m− 1 and C[m,m] = 1. Thus,

det(A) =
det(C)

det(B)
=

∏m
i=1C[i, i]∏m
i=1B[i, i]

=
m−1∏
i=1

(1−A[i, i+ 1]2)

2I thank David Zelinsky for suggesting the proof of this lemma.
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The diagonal minor Rs takes on the same form as R, i.e., there is a vector t′ = (ts(1), . . . , ts(k))
such that Rs has elements Rs[i, j] = exp(−(κ/2)|t′i − t′j |). Applying Lemma 1, for any 2 ≤ k ≤ n
and s ∈ S(n, k) we have

det(Rs) =
k−1∏
i=1

(1− exp(−κ(ts(i+1) − ts(i)))) =
k−1∏
i=1

(1− ρs(i),s(i+1))

Since det(diag(us)) =
∏k
i=1 us(i), we have

Ωk(R diag(u)) =
∑

s∈S(n,k)

det(Rs) det(diag(us))

=
∑

s∈S(n,k)

(
k−1∏
i=1

(1− ρs(i),s(i+1))

)(
k∏
i=1

us(i)

)
= fk(u) (11)

We substitute equation (11) into equation (9) and arrive at the same expansion as in Proposition
1. This completes the proof of Theorem 1.

2 Moments of the increments

Under stationarity, Xt+δ − Xt
d
= Xδ − X0 for all t, so without loss of generality we examine the

stationary distribution of ∆δ = Xδ −X0. From Corollary 1,

M∆(u; δ) = MX(−u, u) = (1− ν2(1− ρ)u2)−θ/ν

=
(

(1− ν
√

1− ρu)(1 + ν
√

1− ρu)
)−θ/ν

= MΓ

(
u
√

1− ρ
)
·MΓ

(
−u
√

1− ρ
)

(12)

where ρ = exp(−κδ) and MΓ is the univariate mgf for X(t). An immediate implication of (12) is
that ∆δ is equivalent in distribution to (1 − ρ)1/2 times ∆∞. Furthermore, ∆∞ is equivalent in
distribution to the difference between two independent draws from the stationary distribution of
X(t). This gives a very simple method for sampling from the stationary distribution of ∆δ.

Consider the general problem of the moments of the difference between two independent and

identically distributed (iid) gamma variates. Let Z1, Z2
iid∼ Ga(α, ν) for shape parameter α > 0 and

scale parameter ν > 0, and define Y = Z1 − Z2. The nth cumulant of Y is

ψn = (1 + (−1)n) (n− 1)!ανn.

Central moments are obtained from the cumulants via the complete Bell polynomials, i.e.,

E [Y n] = Bn(ψ1, ψ2, . . . , ψn).

For any sequence c1, c2, . . ., the Bell polynomials satisfy

Bn(νc1, ν
2c2, . . . , ν

ncn) = νnBn(c1, c2, . . . , cn)

so
E [Y n] = νnBn(0, 2α 1!, 0, 2α 3!, 0, 2α 5!, . . .). (13)

Furthermore, since the distribution is symmetric around zero, we know that the odd moments
E
[
Y 2n+1

]
are zero.

In Appendix B, we prove a general identity on the complete Bell polynomials:
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Lemma 2. Let k be a positive integer and let ξk,1, ξk,2, . . . be the sequence of integers defined by

ξk,j =

{
k if j = 0 (mod k),

0 otherwise.

Then for any scalar α ∈ <+,

Bkn(ξk,1α 0!, ξk,2α 1!, . . . , ξk,knα (kn− 1)!) =
(kn)!

n!

Γ(α+ n)

Γ(α)

where Γ(·) is the Gamma function. For any positive integer m not divisible by k,

Bm(ξk,1α 0!, ξk,2α 1!, . . . , ξk,mα (m− 1)!) = 0.

It follows immediately that the even central moments of Y are

E
[
Y 2n

]
= ν2nB2n(0, 2α 1!, 0, 2α 3!, 0, 2α 5!, . . .) = ν2n (2n)!

n!

Γ(α+ n)

Γ(α)
(14)

and the odd central moments are zero. As kurtosis is often of particular interest, we note

E
[
Y 4
]

E [Y 2]2
= 3(1 + 1/α).

Application to the moments of ∆δ is direct. We substitute α = θ/ν and get even moments

E
[
∆2n
δ

]
= (1− exp(−κδ))nν2n (2n)!

n!

Γ(θ/ν + n)

Γ(θ/ν)
(15)

The kurtosis of ∆δ is 3(1 + ν/θ), which is invariant with respect to the time increment δ.

3 Conclusion

Our main result is a simple closed-form expression for the moment generating function of the
stationary multivariate distribution of a discrete sample path of a square-root diffusion process.
We establish that the distribution is within the Krishnamoorthy-Parthasarathy class, and thereby
draw a connection between a stochastic process and a multivariate distribution that each first
appeared in the literature in 1951.

Our result has application to estimation of parameters of the continuous-time square-root pro-
cess from a discrete sample. It gives a simple and computationally efficient way to generate moment
conditions for the generalized method of moments estimator of Chan et al. (1992). The empirical
characteristic function approach of Jiang and Knight (2002) can also be easily implemented. In-
deed, Jiang and Knight consider the example of a square-root diffusion, but their solution to the
characteristic function corresponds roughly to our intermediate equation (6), rather than to the
simple form in our Theorem 1.

Three of our auxilliary results may have application elsewhere. First, Lemma 1 provides a simple
solution to the determinant of the autocorrelation matrix for a discrete sample of any process
with exponential decay in autocorrelation. This decay rate holds in a large class of stationary
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Markov processes, including Gaussian and non-Gaussian Ornstein-Uhlenbeck processes as well as
the square-root process (Cont and Tankov, 2004, §15.1.2, §15.3.1). Second, our Bell polynomial
identity in Lemma 2 generalizes a known relationship between Bell polynomials and the Gamma
function (i.e., for the case of k = 1 in our lemma). Finally, we provide a simple formula for the
moments of the difference of two iid gamma variates. It complements existing results that allow
the variates to differ in scale parameter (Johnson et al., 1994, §12.4.4), but which lead to more
complicated expressions for the moments.

A Proof of Proposition 1

Let us define Q̃1 = 1− νũ1 and, for 2 ≤ m ≤ n, recursively define

Q̃m = (1− ν(1− ρm−1,m)ũm)Q̃m−1

Since ũn+1 = 0, we have Q̃n = Q(u). We similarly generalize the fk functions as

f̃m,k(w1, . . . , wm) =


1 if k = 0,∑m

i=1wi if k = 1,∑
s∈S(m,k)

(∏k−1
i=1 (1− ρs(i),s(i+1))

)(∏k
i=1ws(i)

)
otherwise.

Observe that the set S(m, k) can be expressed as the union of two disjoint subsets

S(m, k) = S(m− 1, k) ∪ {(s,m)|s ∈ S(m− 1, k − 1)}.

The latter set is equivalent to the subset of S(m, k) for which s(k) = m. This implies that the f̃
functions have the recurrence relation

f̃m,k(w1, w2, . . . , wm) = f̃m−1,k(w1, w2, . . . , wm−1)

+
∑

s∈S(m,k)

1{s(k)=m}

(
k−1∏
i=1

(1− ρs(i),s(i+1))

)(
k∏
i=1

ws(i)

)
(16)

We now demonstrate

Q̃m =
m∑
k=0

(−ν)kf̃m,k(u1, u2, . . . , um−1, ũm) (17)

by induction. For the case m = 1,

Q̃1 = 1− νũ1 = f̃1,0(ũ1)− νf̃1,1(ũ1)

which satisfies equation (17). For 2 ≤ m ≤ n, let us assume that (17) is satisfied for Q̃1, Q̃2, . . . , Q̃m−1.
Then

Q̃m = (1− ν(1− ρm−1,m)ũm)Q̃m−1

= (1− ν(1− ρm−1,m)ũm)
m−1∑
k=0

(−ν)kf̃m−1,k(u1, u2, . . . , um−2, ũm−1). (18)

7



Since f̃m−1,k is linear in each argument,

f̃m−1,k(u1, u2, . . . , um−2, ũm−1) = f̃m−1,k(u1, u2, . . . , um−2, um−1)

+
∑

s∈S(m−1,k)

1{s(k)=m−1}

(
k−1∏
i=1

(1− ρs(i),s(i+1))

)(
k−1∏
i=1

us(i)

)
ρm−1,mũm

1− ν(1− ρm−1,m)ũm

Substituting into (18), we get

Q̃m =

m−1∑
k=0

(−ν)k

[
(1− ν(1− ρm−1,m)ũm)f̃m−1,k(u1, u2, . . . , um−2, um−1)

+ ρm−1,mũm
∑

s∈S(m−1,k)

1{s(k)=m−1}

(
k−1∏
i=1

(1− ρs(i),s(i+1))

)(
k−1∏
i=1

us(i)

)]
(19)

Collecting terms on (−ν)k, we can write

Q̃m =
m∑
k=0

(−ν)kg̃m,k

where
g̃m,0 = f̃m−1,0(u1, . . . , um−1) = 1 = f̃m,0(u1, . . . , um−1, ũm),

and
g̃m,m = (1− ρm−1,m)ũmf̃m−1,m−1(u1, . . . , um−1) = f̃m,m(u1, . . . , um−1, ũm)

and, for 1 ≤ k < m,

g̃m,k = f̃m−1,k(u1, . . . , um−1) + (1− ρm−1,m)ũmf̃m−1,k−1(u1, . . . , um−1)

+ ρm−1,mũm
∑

s∈S(m−1,k)

1{s(k)=m−1}

(
k−1∏
i=1

(1− ρs(i),s(i+1))

)(
k−1∏
i=1

us(i)

)
(20)
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The last term is

ρm−1,mũm
∑

s∈S(m−1,k)

1{s(k)=m−1}

(
k−1∏
i=1

(1− ρs(i),s(i+1))

)(
k−1∏
i=1

us(i)

)

= ρm−1,mũm
∑

s∈S(m−1,k)

1{s(k)=m−1}

(
k−2∏
i=1

(1− ρs(i),s(i+1))

)
(1− ρs(k−1),m−1)

(
k−1∏
i=1

us(i)

)

= ũm
∑

s∈S(m−1,k)

1{s(k)=m−1}

(
k−2∏
i=1

(1− ρs(i),s(i+1))

)
(1− ρs(k−1),m)

(
k−1∏
i=1

us(i)

)

− ũm
∑

s∈S(m−1,k)

1{s(k)=m−1}

(
k−2∏
i=1

(1− ρs(i),s(i+1))

)
(1− ρm−1,m)

(
k−1∏
i=1

us(i)

)

= ũm
∑

s∈S(m,k)

1{s(k−1)<m−1}1{s(k)=m}

(
k−1∏
i=1

(1− ρs(i),s(i+1))

)(
k−1∏
i=1

us(i)

)
− (1− ρm−1,m)ũmf̃m−2,k−1(u1, . . . , um−2)

so

g̃m,k = f̃m−1,k(u1, . . . , um−1)+(1−ρm−1,m)ũm

(
f̃m−1,k−1(u1, . . . , um−1)− f̃m−2,k−1(u1, . . . , um−2)

)
+ ũm

∑
s∈S(m,k)

1{s(k−1)<m−1}1{s(k)=m}

(
k−1∏
i=1

(1− ρs(i),s(i+1))

)(
k−1∏
i=1

us(i)

)

By equation (16),

(1− ρm−1,m)ũm

(
f̃m−1,k−1(u1, . . . , um−1)− f̃m−2,k−1(u1, . . . , um−2)

)
= ũm

∑
s∈S(m−1,k−1)

1{s(k−1)=m−1}

(
k−2∏
i=1

(1− ρs(i),s(i+1))

)(
k−1∏
i=1

us(i)

)
(1− ρm−1,m)

= ũm
∑

s∈S(m,k)

1{s(k−1)=m−1}1{s(k)=m}

(
k−1∏
i=1

(1− ρs(i),s(i+1))

)(
k−1∏
i=1

us(i)

)
so

g̃m,k = f̃m−1,k(u1, . . . , um−1)+ũm
∑

s∈S(m,k)

1{s(k−1)=m−1}1{s(k)=m}

(
k−1∏
i=1

(1− ρs(i),s(i+1))

)(
k−1∏
i=1

us(i)

)

+ ũm
∑

s∈S(m,k)

1{s(k−1)<m−1}1{s(k)=m}

(
k−1∏
i=1

(1− ρs(i),s(i+1))

)(
k−1∏
i=1

us(i)

)

= f̃m−1,k(u1, . . . , um−1) + ũm
∑

s∈S(m,k)

1{s(k)=m}

(
k−1∏
i=1

(1− ρs(i),s(i+1))

)(
k−1∏
i=1

us(i)

)
= f̃m,k(u1, . . . , um−1, ũm)
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where the last equality is by equation (16). Thus, g̃m,k = f̃m,k(u1, . . . , um−1, ũm) for k = 0, . . . ,m,
so equation 17 is proved. Substituting m = n and ũn = un, we arrive at Proposition 1.

B Proof of the Bell polynomial identity

For any sequence of scalars c1, c2, . . ., the generating function of the complete Bell polynomials is

exp

( ∞∑
n=1

cn
xn

n!

)
=

∞∑
n=0

Bn(c1, c2, . . . , cn)
xn

n!
(21)

where we fix B0 = 1. When cj = ξk,jα(j − 1)!, we have

exp

( ∞∑
n=1

cn
xn

n!

)
= exp

( ∞∑
n=1

kα
xkn

kn

)
= exp

( ∞∑
n=1

α
yn

n

)
=

∞∑
n=0

Bn(α 0!, α 1!, . . . , α (n− 1)!)
yn

n!

where we introduce the change of variable y = xk.
Using identities from Comtet (1974, pp. 135, 136) and DLMF (2010, §26.8.7), we have

Bn(α 0!, α 1!, . . . α (n− 1)!) =
n∑
k=1

|s(n, k)|αk =
Γ(α+ n)

Γ(α)

where s(n, k) denotes the Stirling number of the first kind. Restoring the original variable x, we
have

exp

( ∞∑
n=1

cn
xn

n!

)
=

∞∑
n=0

Γ(α+ n)

Γ(α)

yn

n!
=

∞∑
n=0

Γ(α+ n)

Γ(α)

(kn)!

n!

xkn

(kn)!
(22)

Matching terms to the right hand side of (21) with the same power of x, we have

Bkn(ξk,1α 0!, ξk,2α 1!, . . . , ξk,knα (kn− 1)!) =
(kn)!

n!

Γ(α+ n)

Γ(α)

Whenever m is not a multiple of k, the coefficient on xm in the right hand side of (22) is zero, so

Bm(ξk,1α 0!, ξk,2α 1!, . . . , ξk,mα (m− 1)!) = 0.
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